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Abstract

In the present paper we consider a genetic algebra induced by b−bistochastic Quadratic Stochas-
tic Operators (QSOs) which is called b−bistochastic genetic algebra. First, we characterize their
nontrivial character function on Rn. It turns out that, the given character function is not unique,
hence full descriptions of such functions on R1 and R2 are established. Moreover, the defined
algebra is commutative but not associative in general, hence, the associativity of b−bistochastic
genetic algebras defined on R1 and R2 are described. In this work, the existence of non-trivial
derivations on such algebras are given.
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1 Introduction

The theory of population genetics has been significantly contributed by the advancement of the
study in genetic algebras such as baric, evolution, Bernstein, train, stochastic and etc [25, 27, 13]. A
credit must be given to [4] for standardizing the language of abstract algebras to synchronize with
genetic study. Original works on population genetics can be traced back to Bernstein’s research
where the evolution operators were investigated [2]. Later on, the quadratic stochastic operators
(QSOs) generalize the concept of that evolution operators [13]. Dynamics of a QSO is closely
related to the investigation of certain algebraic properties of the generated evolution algebra (see
[3]).

For the sake of comprehension, let us consider QSOs in terms of biological interpretation. Let
In = {1, 2, . . . , n} be the n type of species (or traits) in a population and x(0) = (x

(0)
1 , . . . , x

(0)
n ) rep-

resents the early state probability distribution of the species. By Pij,k wemean that the probability
of an individual in the ith species and jth species to cross-fertilize (or interbreed) and produce an
individual from kth species (trait). For the given x(0), we can find the probability distribution of
the first generation, x(1) = (x

(1)
1 , . . . , x

(1)
n ) by a total probability, i.e,

x
(1)
k =

n∑
i,j=1

Pij,kx
(0)
i x

(0)
j , k ∈ {1, . . . , n}.

Repeating the similar procedures, one may get probability distribution of the second generation,
x(2) and so on. Hence, a QSO defines an evolution operator where it describes the probabilistic
distribution of next generation if the initial probability state is given. Recent achievements and
open problems in the theory of QSOs can be found in [20, 8] and the references therein.

Several studies have been made (see [6, 1, 23]) to investigate genetic algebras generated by
QSOs which forms an algebraic structure on the vector space Rn. Please refer also to [13, 21, 22]
for the same studies. Certain relations between genetic and evolution algebras have been estab-
lished in [16, 17]. We note that, the induced genetic algebras (via gametic, zygotic, or copular
algebras) are generally commutative but non-associative, yet they are not necessarily Lie, Jordan,
or alternative algebras. These algebraic properties have genetically meaning for modern uses, for
instance, self-fertilization which can be found in [11]. Therefore, there are interactions between
the purelymathematical structures and the corresponding genetic properties. We refer the readers
to the article [27] for a comprehensive reference.

Based on the previous studies, it is apparent that investigation ofQSOs in general is challenging
(unlike in case of linear operators), therefore the researchers are likely to introduce classes of
QSOs such as Volterra-QSOs [9], b−bistochastic QSOs [15], doubly QSOs [7], separable QSOs
[26], ξs−QSOs [18], Geometric QSOs [12] and etc. In [6], the authors introduced genetic Volterra
algebras and some of their algebraic properties were studied. Recently, connections between the
evolution algebras and the associated dynamical system have been made in [24] for the case of
Volterra QSOs. Motivated from those ideas, we are going to consider genetic algebras generated
by b−bistochastic QSOs [15] which is simply called b−bistochastic genetic algebras. We point
out that, the considered class of QSO’s is a generalization to the concept of majorization that was
popularized by Hardy, Littlewood and Polya [10]. Dynamical properties of b−bistochastic QSOs
could be further referred to [15, 19].

This paper is organized as follows: Section 2 is devoted to preliminary definitions andnotations
throughout this paper. Descriptions of the character functions b−bistochastic genetic algebras are
given in Section 3. In Section 4, we study the associativity of b−bistochastic genetic algebras. Last
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section is dedicated to the existence of non-trivial derivations b−bistochastic genetic algebras.

2 Preliminaries

This section presents necessary facts and notations throughout this paper. Let In = {1, . . . , n}.
By {ei}i∈In we denote the standard basis in Rn i.e., ei = (δi1, δi2, . . . , δin) where δij are the Kro-
necker’s Delta. Here and henceforth, we are going to consider the simplex:

Sn−1 =

{
x = (x1, x2, ..., xn) ∈ Rn |xi ≥ 0,

n∑
i=1

xi = 1

}
. (1)

Let us define an operator V that maps from Sn−1 by:

V (x)k =

n∑
i,j=1

Pij,kxixj , k ∈ In, x = (x1, x2, . . . , xn) ∈ Sn−1, (2)

where the heredity coefficients Pij,k satisfy

Pij,k ≥ 0, Pij,k = Pji,k,

n∑
k=1

Pij,k = 1, for any i, j, k ∈ In. (3)

One can check that V maps from the simplex Sn−1 into itself. Such operator V is known as
Quadratic Stohastic Operator (QSO). Suppose that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
are arbitrary vectors in Rn. By means of QSOs we introduce a multiplication rule (see [11]) on Rn

as follows:

(x ◦ y)k =

n∑
i,j=1

Pij,kxiyj . (4)

The pair (Rn, ◦) is called genetic algebras. Note that, the defined algebra is commutative, but not
necessarily to be associative in general. Some algebraic properties of the defined algebras were
studied in [11, 13, 27]. The authors in [6] define genetic algebras associated with a well-known
class of QSOs, namely Volterra QSOs. Motivated from this idea, we are interested to induce the
genetic algebras from b−bistochastic QSOs (see [15]). In what follows, the term b−bistochastic
genetic algebras is referring to genetic algebras generated by b−bistochastic QSOs. Let us define
functionals Uk : Rn → R by:

Uk(x1, . . . , xn) =
k∑

i=1

xi where k ∈ In−1. (5)

Take anyx,y, z ∈ Sn−1. We say thatx is b-ordered byy (x ≤b y) if and only ifUk(x) ≤ Uk(y), for all k ∈
In−1. The introduced relation is indeed partial order i.e., it satisfies the following conditions:

(i) For any x ∈ Sn−1 one has x ≤b x,

(ii) If x ≤b y and y ≤b x then x = y,

(iii) If x ≤b y, and y ≤b z then x ≤b z.
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Moreover, it has the following properties:

(i) One has that x ≤b y if and only if λx ≤b λy for any λ > 0

(ii) If x ≤b y and λ ≤ µ then λx ≤b µy

Using this order, one candefine themajorization [14]. First, recall that for anyx = (x1, x2, . . . , xn) ∈
Sn−1, we write x[↓] = (x[1], x[2], . . . , x[n]), where

x[1] ≥ x[2] ≥ · · · ≥ x[n]

is non-increasing rearrangement of x. The point x[↓] is called rearrangement of x by nonincreasing.
We say that x is majorized by y (or y majorates x) and denoted x ≺ y (or y � x) if x[↓] ≤b y[↓].
Comprehensive information on this concept, results and applications could be found in [14]. One
sees that b−order does not required the rearrangement ofx. Any operator V with V (Sn−1) ⊂ Sn−1

is called stochastic. In the same manner, if V satisfies V (x) ≤b x for all x ∈ Sn−1, then it is called
b−bistochastic.

The following theorems fully describe b−bistochastic QSOs defined on one and two dimen-
sional simplices in terms of their heredity coefficients, respectively.

Theorem 2.1. [15] Let V: S1 −→ S1 be a QSO, then V is a b-bistochastic if and only if

P12,1 ≤
1

2
, P22,1 = 0.

To describe two-dimensional QSOs, first, denote the heredity coefficients as follows:

P11,1 = A1 P13,1 = C1 P23,1 = E1,

P11,2 = A2 P13,2 = C2 P23,2 = E2, (6)
P12,1 = B1 P22,1 = D1 P33,1 = F1,

P12,2 = B2 P22,2 = D2 P33,2 = F2.

Theorem 2.2. [15] Let V: S2 −→ S2 be a QSO, then V is a b-bistochastic if and only if

(i) F1 = E1 = D1 = F2 = 0;

(ii) B1 ≤ 1/2, C1 ≤ 1/2, E2 ≤ 1/2;

(iii) C1 + C2 ≤ 1/2,

and one of the following conditions satisfied :

(I) α ≥ 0;

(II) α < 0 and one of the following conditions satisfied:

(1) β ≤ 0;
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(2) β ≥ −2α;
(3) 4 ≤ 0.

where α = A1 +A2 +D2 − 2B1 − 2B2, β = 2B1 + 2B2 − 2D2, γ = D2 − 1, 4 = β2 − 4αγ.

Necessary conditions for b−bistochastic QSOs in general setting are given as follows:

Theorem 2.1. [15] Let V be a b−bistochastic QSO defined on Sn−1, then the following properties hold:

(i)
k∑

m=1

n∑
i,j=1

Pij,m ≤ kn; k = 1, n

(ii) Pij,k = 0 for ∀ i, j = k + 1, n where k = 1, n− 1

(iii) Pnn,n = 1

(iv) (a) V (x)k =
k∑

l=1

Pll,kx
2
l + 2

k∑
l=1

n∑
j=l+1

Plj,kxlxj where k = 1, n− 1

(b) V (x)n = x2n +
n−1∑
l=1

Pll,nx
2
l + 2

n−1∑
l=1

n∑
j=l+1

Plj,nxlxj

(v) Plj,l ≤
1

2
for all l = 1, n− 1 where j ≥ l + 1

(vi) Pll,l + 2
n∑

j=l+1

Plj,l + 2Pln,l(l − n) ≤ 1 where l = 1, n− 1

Next, let us introduce the definition of Volterra QSOs. If the associated heredity coefficients
Pij,k of a QSO V satisfy the following conditions:

Pij,k = 0 for any i, j 6= k, (7)

then V is called a Volterra QSO. Biological interpretation of last statement is that the offspring k’s
typed is only possible to repeat the trait from its parents i.e., i’s or j’s typed. Using Theorem 2.1
and 2.2 one concludes the following remarks which explain the relationship between Volterra and
b−bistochastic QSOs defined on one and two dimensional simplices, respectively.

Remark 2.2. Let V : S1 → S1 be a b−bistochastic QSOs, then V is Volterra QSOs if and only ifP11,1 = 1.

Remark 2.3. Let V : S2 → S2 be a b−bistochastic QSOs where the heredity coefficients is denoted by (6)
, then V is Volterra if and only if A1 = D2 = 1.

3 Character Function

In this section, we characterize the character functions of b−bistochastic genetic algebras. Let
A be a b−bistochastic genetic algebra, then a linear functional h from A to R to be a character of A
if its satisfies h(x ◦ y) = h(x)h(y) for all x,y ∈ Rn. One easily can see that if h(x) = 0, then the
functional h is a character of A. Such function is called trivial character, therefore it is interesting
to describe all non-trivial case. We note that, h is a character function if and only if

h(ei ◦ ej) = h(ei)h(ej) for any i, j ∈ In. (8)
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Theorem 3.1. For any n dimensional b−bistochastic genetic algebras A, then a functional given by

h(x) =

n∑
i=1

xi. (9)

is a character of A.

Proof. Let h(x) be a linear functional given by (9), then by computing ei ◦ ej and taking into
account the properties of heredity coefficients (see (3)), one finds that h(ei ◦ ej) = 1. Thus, it is
clear that h(ei ◦ ej) = h(ei)h(ej) for any i, j ∈ N. Hence, h(x) is a character of A. This ends the
proof.

We stress that, non-trivial character functions of b−bistochastic genetic algebras may not be
unique. Thus, a full description of their character functions defined on low dimensions will given
in this section. For the sake of simplicity, the heredity coefficients, Pij,k of any QSO V defined on
S1 are denoted by:

a = P11,1, b = P12,1, c = P22,1. (10)

In case of b−bistochastic QSOs, c = 0.

Theorem 3.2. LetA be a b−bistochastic genetic algebra on R2. The character ofA takes the following forms:

(i) h(x) = x1 + x2.

(ii) h(x) = ax1 if b = 0.

for any x ∈ A.

Proof. Statement (i) is obtained by means of Theorem 3.1. Next, let us prove for (ii) by supposing
that b = 0. From h(e2 ◦ e2) = h(e2)h(e2), then one has γ2 − γ22 = 0 or equivalently γ2 ∈ {0, 1}. If
γ2 = 1, then by h(e1 ◦ e2) = h(e1)h(e2) yields γ1 = 1 i.e., (i). Therefore, take γ2 = 0 and using
h(e1 ◦ e1) = h(e1)h(e1) produces γ1(a − γ1) = 0. We conclude that γ1 = a, hence proves this
theorem.

The rest of this section aims to describe the character functions of b−bistochastic genetic alge-
bras defined on R3. Using (8), it follows that,

A1γ1 +A2γ2 + (1−A1 −A2)γ3 = γ21 (11)
B1γ1 +B2γ2 + (1−A1 −A2)γ3 = γ1γ2 (12)
C1γ1 + C2γ2 + (1− C1 − C2)γ3 = γ1γ3 (13)

D2γ2 + (1−D2)γ3 = γ22 (14)
E2γ2 + (1− E2)γ3 = γ2γ3 (15)

γ3 = γ23 . (16)

Now, let us formulate main result in this section.
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Character
functions of
b−bistochastic

genetic
algebra γ3 = 1 ⇒

h(x) =
x1 + x2 + x3

γ3 = 0

E2 > 0 ⇒
γ2 = 0

C1 > 0 ⇒
h(x) = 0

C1 = 0

B1 > 0 ⇒
h(x) = 0

B1 = 0

γ1 = 0 ⇒
h(x) = 0

γ1 = A1 ⇒
h(x) = A1x1

E2 = 0 continue

Figure 1: Summary of all possible cases to describe the character function on R3

Theorem 3.3. Let A be a b−bistochastic genetic algebra defined on R3. The character function of A has
non-trivial forms as follows:

(i) h(x) = γ1x1 + γ2x2 where
γ1 =

−C2D2

C1
, γ2 = D2

and B2C1 + C2D2 −B1C2 = 0, C2
1A2 −A1C1C2 − C2

2D2 = 0.

(ii) h(x) = γ1x1 + γ2x2 where
γ1 =

B2D2

D2 −B1
, γ2 = D2

and C2 = 0, D2 6= B2, A1B2D2(D2 −B1) +A2D2(D2 −B1)
2 −B2

2D
2
2 = 0.

(iii) h(x) = γ1x1 + γ2x2 where

γ1 =
A1 ±

√
4

2
, γ2 = D2,

and, B2 = 0, 4 = A2
1 − 4A2B1 ≥ 0.

(iv) h(x) = A1x1 for A1 6= 0.

(v) h(x) = x1 + x2 + x3.

Proof. Assume that the linear functional, h(x) = γ1x1 + γ2x2 + γ3x3 is a character function of A,
then we shall have all equations (11) to (16). From (16) yields γ3 = 0 or γ3 = 1 (see Figure 1). If
γ3 = 1, then by the same method provided in the proof of Theorem 3.1 we get (v). Thus, let us
assume that γ3 = 0. Our interest is to find the value for γ1 and γ2. Hence, (16) becomes E2γ2 = 0,
so again it is either E2 = 0 or E2 > 0 (see Figure 1).

Case 1: Let E2 > 0. From (15) one infers that γ2 = 0. Consequently, if eitherB1 > 0 or C1 > 0,
we get γ1 = 0 (see (12) and (13)), hence a trivial character. Therefore, we let B1 = C1 = 0. From
(11) one gets γ1 = A1 or else γ1 = 0 which is again a trivial case. Without the loss of generality
we may assume that A1 6= 0which shows (iv).
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E2 = 0

γ2 = 0

γ2 = D2

C1 > 0⇒ (i)

C1 = 0

D2 6=
B1 ⇒ (ii)

D2 =
B1 ⇒ (iii)

Figure 2: A continuation of Figure 1

Case 2: Let us consider E2 = 0. Taking into account (14) we obtain

γ2(D2 − γ2) = 0,

which implies either γ2 = 0 or γ2 = D2 (see Figure 2). Suppose that γ2 = 0, then it repeats again
Case 1, thus γ2 = D2 (without the lost of generality we may assume that D2 6= 0) and if C1 > 0,

then from (13) yields C1γ1 + C2D2 = 0. Consequently, one gets γ1 =
−C2D2

C1
. Substituting the

value of γ1 and γ2 into (11) and (12) we find thatC2
1A2−A1C1C2−C2

2D2 = 0 andB2C1+C2D2−
B1C2 = 0, respectively. This proves (i).

(ii). From γ2 = D2 (see Figure 2) we suppose that C1 = 0, then by (13) one has C2D2 = 0
which implies that C2 = 0. Moreover (12) reduces to

B1γ1 +B2D2 = γ1D2,

which yields γ1 =
B2D2

D2 −B1
only if D2 6= B1. Taking into account (11) one has A1B2D2(D2 −

B1) +A2D2(D2 −B1)
2 −B2

2D
2
2 = 0, thus shows (ii).

(iii) As a continuation from (ii), we suppose that D2 = B1. Then (12) gives B1B2 = 0 which
means B2 = 0. By solving the value γ1 from (11) one gets

γ1 =
A1 ±

√
4

2
,

where4 = A2
1 − 4A2B1 ≥ 0 i.e., (iii). The proof is completed.

4 Section 4: Associativity of b−bistochastic Genetic Algebras

The objective in this section is to provide a complete description of associativity b−bistochastic
genetic algebras defined on R2 and R3. Based on the definition of associativity, one may show that
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a genetic algebra A is associative if and only if

(ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) satisfy for all i, j, k ∈ In. (17)

Let us consider b−bistochastic genetic algebras A on R2 where the associated heredity coeffi-
cients is denoted by (10).

From Theorem 2.1 one has the following multiplication table:

◦ e1 e2
e1 (a ; 1− a) (b ; 1− b)
e2 (b ; 1− b) (0 ; 1)

Table 1: Multiplication Table (R2, ◦)

Next theorem describes associativity of A on R2.

Theorem 4.1. Two dimensional b−bistochastic genetic algebras are associative if and only if b = 0.

Proof. Let us assume that A is associative, then taking into account Table 1, we have

(e1 ◦ e1) ◦ e2 = e1 ◦ (e1 ◦ e2)⇒ abe1 + (1− ab)e2 = (ab+ b(1− b)e1 + ((1− a)b+ (1− b)2)e2.

Solving the equality above, we obtain the following quadratic equation:

b2 − b = 0,

which has roots b = 0 and b = 1. Thanks to Theorem 2.1, we infer that b = 0. Vice verse, suppose
that b = 0, we are going to show (ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) are satisfied for all i, j, k ∈ I2.
Observe that, for i = j = k = 1 and i = j = 1, k = 2 then the statements are obvious. In case of
i = k = 1, j = 2 the associativity is satisfied since,

(e1 ◦ e2) ◦ e1 = e2 ◦ e1 = e1 ◦ e2 = e1 ◦ (e2 ◦ e1).

Others can be shown similarly. This finishes the proof.

Full description of two-dimensional genetic algebra could be found in [5]. Unfortunately, the
proof was not given.

Furthermore, let us consider three dimensional b-bistochastic genetic algebras where the asso-
ciated heredity coefficients are given by (6). Based on Theorem 2.2 one gets the following multi-
plication table:

◦ e1 e2 e3
e1 (A1 ; A2 ; 1−A1 −A2) (B1 ; B2; 1−B1 −B2) (C1 ; C2 ; 1− C1 − C2)
e2 (B1 ; B2 ; 1−B1 −B2) (0 ; D2 ; 1−D2) (0 ; E2 ; 1− E2)
e3 (C1 ; C2 ; 1− C1 − C2) (0 ; E2 ; 1− E2) (0 ; 0 ; 1)

Table 2: Multiplication Table (R3, ◦)
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Theorem 4.1. Three dimensional b−bistochastic genetic algebras are associative if and only if C1 = C2 =
E2 = 0 and either (i) or (ii) is satisfied. Here (i) and (ii) are given by,

(i) B2 = 0 and either
(a) A2 = 0 and B1 = 0 or
(b) B1 = D2.

(ii) B2 = A1 > 0 and B1 = D2 = 0.

Proof. Let us prove "if " part. Associativity condition gives:

(ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) for all i, j, k ∈ I3. (18)

By considering (e1 ◦ e3) ◦ e3 = e1 ◦ (e3 ◦ e3) and (e2 ◦ e3) ◦ e3 = e2 ◦ (e3 ◦ e3) one has

C1(C1 − 1) = 0 and E2(E2 − 1) = 0,

respectively. The last statement and Theorem 2.2 imply C1 = 0 and E2 = 0. This result togehter
with (e1 ◦ e3) ◦ e3 = e1 ◦ (e3 ◦ e3) produce C2 = 0.

Therefore, (18) reduces to

B1B2 = 0 (19)
B2(A1 −B2) +A2(D2 −B1) = 0 (20)

A2D2 +B1(−A2 −B2) +B2(A1 −B2) = 0 (21)
B1(B1 −D2) = 0 (22)

B1(D2 −B1 −B2) = 0 (23)
B1(D2 −B1) = 0 (24)

B1(B1 +B2 −D2) = 0 (25)
A2(D2 −B1) +B2(A1 −B1 −B2) = 0 (26)

B2D2 = 0. (27)

Taking into account (19), one can check that (20), (21) and (26) are the same. Moreover, (22)
and (24) are clearly equivalent. Keeping in mind (19) and (22), the equations (23) and (25) are
obviously satisfied. These simplifications yield the following a system of equations:

B1B2 = 0
B2(A1 −B2) +A2(D2 −B1) = 0
B1(B1 −D2) = 0
B2D2 = 0.

(28)

From now on, we divide into two cases i.e., Case 1: B2 = 0 and Case 2: B2 > 0.

Case 1: Let B2 = 0. Then (28) becomes{
A2(D2 −B1) = 0
B1(B1 −D2) = 0,

(29)

which is evidently satisfied if either A2 = B1 = 0 or B1 = D2. This proves (i).
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Case 2: Let B2 > 0. Then B1 = D2 = 0, therefore (28) reduces to

B2(A1 −B2) = 0,

that implies A1 = B2. Hence, proves (ii). Next, "only if " part is obvious due to the calculations
above. This ends the proof.

We stress that, the description of the associativity in general setting is tricky since the necessary
and sufficient conditions defined on any finite dimension is not known in the literature.

5 Derivation of b−bistochastic Genetic Algebras

In this section, we show that the existence of non-trivial derivation of considered algebras.

Let (A, ◦) be a genetic algebra. Recall that, a linear mapping D : A → A is called derivation of
A if the mapping satisfies

D(x ◦ y) = D(x) ◦ y + x ◦D(y), (30)

for any element x,y ∈ A. By means of linearity one has D is derivative if and only if

D(ei ◦ ej) = D(ei) ◦ ej + ei ◦D(ej), (31)

for all i, j ∈ In.

The following theorem describes the derivation of two dimensional b−bistochastic genetic al-
gebras.

Theorem 5.1. Let A be two dimensional b-bistochastic genetic algebras. Then the following statements
hold:

(i) If b 6= 1/2 and b 6= a/2, then all derivatives are trivial.

(ii) If b = 1/2 and a 6= 1, then all derivatives are trivial.

(iii) If b = a/2 for any a ∈ [0, 1), then the derivative has the following form:

D(x) = x1t(e2 − e1) for any t ∈ R.

(iv) If b = 1/2 and a = 1 , then the derivative has the following form:

D(x) = e1(sx2 − tx1) + e2(tx1 − sx2) for any s, t ∈ R.

Proof. Let D be a linear operator given by

D(ei) =

n∑
j=1

dijej , (32)
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is a derivation of A. Then, (31) leads to:

ad11 + 2bd12 − (1− a)d21 = 0 (33)
2(1− a)d11 + (2(1− b)− a)d12 − (1− a)d22 = 0 (34)
(2b− 1)d21 = 0 (35)
2(1− b)d21 + d22 = 0 (36)
(1− b− a)d21 − bd22 = 0

(b− 1)d12 − (1− b)d11 − (1− a)d21 = 0

Taking into account Theorem 2.1 and (35), we can consider two cases b < 1

2
and b = 1

2
.

CASE I: Let b < 1

2
, then from (35) one gets d21 = 0. This fact together with (36) yields d22 = 0.

Further, substituting (33) into (34) reduces the last system of equations to:

ad11 + 2bd12 = 0. (37)
(2− a)(d11 + d12) = 0. (38)
(1− b)(d12 + d11) = 0. (39)

Since a 6= 2, then (38) implies d12 = −d11. The last equality together with (37) produce (a −
2b)d11 = 0. Therefore, we divide into two parts.

Part 1: Suppose b 6= a

2
, then d11 = d12 = d21 = d22 = 0 i.e., the derivative D is trivial, hence

proves (i).

Part 2: Let b = a

2
. It should be clear that d11 becomes a free variable i.e., d11 = t ∈ R. Thus,

D(x) = x1t(e2 − e1),

which yields (iii).

Case II: In this case, we let b = 1

2
. Using (31) one gets the following system of equations:

ad11 + d12 − (1− a)d21 = 0

2(1− a)d11 + (1− a)d12 − (1− a)d22 = 0

d21 + d22 = 0 (40)
1

2
(d21 − d22)− ad21 = 0

1

2
(d11 + d12) + (1− a)d21 = 0.

Due to (40) the system becomes:

ad11 + d12 − (1− a)d21 = 0 (41)
(1− a)(2d11 + d12 + d21) = 0 (42)

(1− a)d21 = 0 (43)
1

2
(d11 + d12) + (1− a)d21 = 0 (44)
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Referring to the equation (43), again we divide into two parts.

Part 1: Let a 6= 1, thus d21 = 0. From (44), one has d11 = −d12 and together with (41) produce
d11 = d12 = 0. Therefore, the derivation D is trivial i.e., (ii).

Part 2: Let a = 1. Taking into account (41), we get d11 = −d12. Letting d12 = t and d21 = s
then the derivation takes the following form:

D(X) = e1(sx2 − tx1) + e2(tx1 − sx2)

which proves(iv).

We stress that in [6], it was given a full description of derivation genetic Volterra algebra on
three dimension. Namely,

Theorem 5.1. [6] Let A be a three dimensional genetic Volterra algebra. The algebra has a non-trivial
derivation if and only if there exists i, j, k with i, j, k ∈ I3 such that Pij,i =

1

2
, Pik,i = Pjk,j .

Recall Remark 2.2, there are similarities between b−bistochastic and Volterra QSOs defined on
S2, hence it is interesting to study the derivation genetic algebras generated bypurely b−bistochastic
QSOs. We say that purely b−bistochastic QSOs associated with Class (i) if A2 > 0, Class (ii) if
B1 + B2 < 1, Class (iii) if C2 > 0, Class (iv) if D2 < 1. Based on the definition of Volterra, these
classes are not Volterra, for instance Class (i) is not Volterra since A2 = P11,2 > 0 (see (7)).

Here and henceforth, by purely b−bistochastic QSOs, we are referring the operator which is
associated with Class (iii) only. One observes that, from the assumption C2 > 0 and (iii) in

Theorem 2.2 imply C1 <
1

2
. Let us provide an auxiliary result as follows:

Proposition 5.2. Let A be a b-bistochastic genetic algebra. If D is a derivation, then
3∑

j=1

dij = 0 for any i ∈ {1, 2, 3}.

Proof. Let us assume that D is derivation for A. Using Table 2 one has

D(e3) = 2D(e3) ◦ e3

= 2

 3∑
j=1

d3jej

 ◦ e3
= 2

3∑
j=1

d3j (ej ◦ e3)

= 2C1d31e1 + 2(d31C2 + d32E2)e2 + 2(d31(1− C1 − C2) + d32(1− E2) + d33)e3

Comparing both hand sides, one obtains the following system of equations

d31 − 2d31C1 = 0; (45)
d32 − 2 d31 C2 − 2 d32E2 = 0; (46)

−d33 − 2 d31 + 2 d31 C1 + 2 d31 C2 − 2 d32 + 2 d32E2 = 0. (47)
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One easily can check that the sum of (45), (46) and (47) produce

d31 + d32 + d33 = 0. (48)

Further, from D(e2 ◦ e2) = 2D(e2) ◦ e2 we have the following system of equations

d21D2 + d31 − d31D2 − 2 d21B1 − 2 d23 C1 = 0 (49)
−d22D2 + d32 − d32D2 − 2B2 d21 − 2 d23 C2 = 0 (50)

D2 d23 + d33 − d33D2 − 2 d21 + 2 d21B1 + 2B2 d21 − 2 d22+ (51)
2D2 d22 − 2 d23 + 2 d23 C1 + 2 d23 C2 = 0

Adding up (49) to (51) and taking into account (48) give

(d21 + d22 + d23)(D2 − 2) = 0

Since D2 ≤ 1, we infer

d21 + d22 + d23 = 0. (52)

Using similar argument, one can consider the equalities D(e1 ◦ e2) = 2D(e1) ◦ e1, (48) and (52)
to show that

d11 + d12 + d13 = 0. (53)

The obtained equations (48), (52) and (53) prove the proposition.

Theorem 5.3. Let A be a purely b-bistochastic genetic algebra. If E2 <
1

2
and C1 > 0, then the derivation

is trivial.

Proof. Suppose that A be a purely b-bistochastic genetic algebra with E2 <
1

2
and C1 > 0. Let D

be a derivation given by (32). From (45) and early assumption, we conclude that d31 = 0. This
result together with (46) yield d32 = 0. Using Proposition 5.2 we get d33 = 0. Substituting the last
results into D(e3 ◦ e2) = D(e3) ◦ e2 + e3 ◦De2 and it produces a system of equations as follows:

d21E2 − d21C1 = 0

−d21C2 = 0 (54)
d23E2 − d21 + d21C1 + d21C2 − d22 + d22E2 − d23 = 0

Due to C2 > 0 and (54), one concludes d21 = 0. Moreover, from (49), one has −2d23C1 = 0.
Since C1 > 0, thus d23 = 0. Using Proposition 5.2 we get d22 = 0. By computing D(e2 ◦ e3) =
D(e2) ◦ e3 + e2 ◦ D(e3) one has d11 = d12 = d13 = 0, hence a trivial derivation. This ends the
proof.

A natural question may arise, is there any non-trivial derivation for purely b−bistochastic ge-
netic algebras. This question is answered in next theorem.

Theorem 5.4. If A1 = 2B1, A2 = B2 − B1, D2 = B1 + B2 and E2 = C2, then there exists non-trivial
derivation of b−bistochastic genetic algebras.
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Proof. From Theorem 2.2, one easily can check that α = 0 i.e., the selected heredity coefficients
Pij,k is indeed b−bistochastic QSOs. Let us define the functional D in the form:

D(e1) = t(e1 − e2), D(e2) = 0, D(e3) = 0 for any t ∈ R.

To prove D is a derivation, we are going to use Lemma 31. By mean of Table 2 one has

D(e1 ◦ e1) = D(A1e1 +A2e2 + (1−A1 −A3)e3)

= A1D(e1) +A2D(e2) + (1−A1 −A2)D(e3)

= 2tB1(e1 − e2).

On the other hands,

2D(e1) ◦ e1 = 2t(e1 − e2) ◦ e1
= 2te1 ◦ e1 − 2te2 ◦ e1
= 2t(A1e1 +A2e2 + (1−A1 −A2)e3)− 2t(B1e1 +B2e2 + (1−B1 −B2)e3)

= 2t(2B1e1 + (B2 −B1)e2 + (1− 2B1 −B2 +B1)e3)

−2t(B1e1 +B2e2 + (1−B1 −B2)e3)

= 2tB1(e1 − e2)

i.e., D(e1 ◦ e1) = 2D(e1) ◦ e1. Using the similar method one can prove that D(ei ◦ ej) = D(ei) ◦
ej + ei ◦D(ej) is satisfied for all i, j = {1, 2, 3}. ThusD is a derivation for A, hence completes the
proof.
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